Two promising post-treatment techniques, i.e. applying tensile strain and rising temperature, are demonstrated to enhance the mode-coupling efficiency of the CO2-1aser-induced long period fiber gratings (LPFGs) with periodic grooves. Such two post-treatment techniques can be used to enhance the resonant attenuation of the grating to achieve a LPFG-based filter with an extremely large attenuation and to tailor the transmission spectrum of the CO2-1aser-induced LPFG after grating fabrication.