基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The rapid development of online social network has attracted a lot of research attention. On online social network, people can discuss their ideas, express their interests and opinions, all of which are demonstrated by information propagation. So how to model the information propagation cascade accurately has become a hot topic. In this paper, we firstly incorporate the retweet probability into the traditional propagation models. To find the accurate retweet probability, we introduce the logistic regression model for every user based on the extracted features. With the crawled real dataset, simulation is conducted on the real online social network and moreover some novel results have been obtained. The homogenous retweet probability in the original model has underestimated the speed of information propagation, despite the scale of information propagation is almost at the same level. Besides, the initial information poster is really important for a certain propagation, which enables us to make effective strategies to prevent epidemics of rumor on social network.
推荐文章
Twitter的Follow关系和Retweet关系对比
在线社交网络
网络数据分类
同质性
推特网
Twitter的Follow关系和Retweet关系对比
在线社交网络
网络数据分类
同质性
推特网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Information Propagation with Retweet Probability on Online Social Network
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 retweet PROBABILITY online social network INFECTIOUS MODEL DIFFUSION MODEL LOGISTIC regression
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 95-96
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
retweet
PROBABILITY
online
social
network
INFECTIOUS
MODEL
DIFFUSION
MODEL
LOGISTIC
regression
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导