基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
向量空间模型是最常用的信息检索模型,它根据词频来计算文档之间的相关度,这种方法虽然能够满足用户的基本检索需求,但是对于检索要求较高的用户,其效果仍然不甚理想。文中在向量空间模型的基础上,首先通过领域本体和上层本体来计算特征词项之间的相似度,据此得出与查询词相关的词,在求词项频率和逆文档频率时考虑这些词,然后引入了词序相关度和词语相邻相关度这两个概念,把特征项的位置关系也考虑进来。实验结果表明,文中提出的模型相比原始向量空间模型,在准确率上有了较大的改善。这完全说明,与原始向量空间模型相比,文中提出的检索模型不仅考虑了与原有词项具有相似语义的词项,而且还考虑了词项顺序和词项相邻信息,从而更能符合用户的检索要求。
推荐文章
利用领域本体概念关系的混合信息检索方法
领域本体
混合信息检索模型
关键词检索
语义检索
基于本体的信息检索模型研究
本体
信息检索
向量空间算法
知识库
基于旅游领域本体的语义检索模型
旅游
本体
Jena推理规则
语义相似度
语义检索
基于领域本体的学习资源语义检索模型
e-learning
学习资源
领域本体
语义检索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于领域本体和位置关系的信息检索模型
来源期刊 计算机技术与发展 学科 工学
关键词 检索模型 向量空间模型 本体 相似度
年,卷(期) 2015,(1) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 6-10
页数 5页 分类号 TP31
字数 5625字 语种 中文
DOI 10.3969/j.issn.1673-629X.2015.01.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋宗礼 北京工业大学计算机学院 103 997 17.0 27.0
2 隋少鹏 北京工业大学计算机学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (109)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
检索模型
向量空间模型
本体
相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导