Enterprises have vast amounts of customer behavior data in the era of big data. How to take advantage of these data to evaluate custom forfeit risks effectively is a common issue faced by enterprises. Most of traditional customer churn predicting models ignore customer segmentation and misclassification cost, which reduces the rationality of model. Dealing with these deficiencies, we established a research model of customer churn based on customer segmentation and misclassification cost. We utilized this model to analyze customer behavior data of a telecom company. The results show that this model is better than those models without customer segmentation and misclassification cost in terms of the performance, accuracy and coverage of model.