基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对极限学习机(ELM)神经网络初始权阈值对算法性能的影响问题,提出一种融合遗传算法(GA)与粒子群算法(Pso)的GAPSO算法,用于优化ELM神经网络初始权阈值.该算法将群组一分为二,分别采用GA和PSO算法,再将优秀个体进行合并,改善了PSO算法全局搜索能力,同时增强了GA算法的局部搜索效能.通过对柴油机故障诊断的实验证明,基于GAPSO优化初始权阈值的ELM神经网络可以有效提升故障诊断精度.
推荐文章
基于优化小波神经网络在柴油机故障诊断上的应用
小波神经网络
柴油机
故障诊断
基于改进人工免疫和神经网络的柴油机故障诊断
柴油机
故障诊断
BP算法
人工免疫
基于神经网络的柴油机故障诊断方法
神经网络
BP算法
柴油机
故障诊断
基于改进DBD算法的神经网络在柴油机故障诊断中的应用
DBD算法
遗传算法
神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GAPSO算法优化的ELM神经网络在柴油机故障诊断中的应用
来源期刊 内燃机 学科 工学
关键词 遗传算法 粒子群算法 极限学习机 柴油机 故障诊断
年,卷(期) 2015,(5) 所属期刊栏目
研究方向 页码范围 26-29
页数 4页 分类号 TK428
字数 2494字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈福光 8 18 3.0 4.0
2 刘溪 6 8 2.0 2.0
3 黄炀 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (736)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(12)
  • 参考文献(0)
  • 二级参考文献(12)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遗传算法
粒子群算法
极限学习机
柴油机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
内燃机
双月刊
1000-6494
50-1100/TK
大16开
重庆市石桥铺渝州路17号
78-92
1985
chi
出版文献量(篇)
2278
总下载数(次)
5
论文1v1指导