Based on a six-cylinder direct injection diesel engine, the engine operating condition was simulated by application AVL-FIRE software coupling the n-heptane reduced mechanism containing polycyclic aromatic hydrocarbon (PAH) formation. The simulation and its verification test were both carried out under the maximum torque point. Then, the oxygen enriched combustion was simulated on the model, and the simulated condition was oxygen volume fraction from 21% to 30%. The simulation results show that, the oxygen enrichment (from 21% to 30%) increases the peak cylinder pressure of 3.32%, advances the start of combustion of 1.6 deg and rises the peak of average temperature in cylinder and wall heat flux. Among them, at the condition of 24% O2, the change of the results is the most significant. Benzene (A1) is one of the precursors of soot generated, the analysis of its impress-cuts of the mass distribution field in cylinder shows that, the increase of oxygen concentration can significantly inhibit the formation of benzene. But the oxygen enrichment makes the combustion more sufficient, cased a rise in the cylinder temperature, an extension in high temperature area, and an increment in the NOx emission.