基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
船舶流量预测是船舶交通流研究的重要内容,建立科学合理的船舶流量预测模型有助于航道的设计、规划和管理。将传统的单断面船舶交通流预测方法向多断面进行改进和推广,提出基于状态空间和卡尔曼滤波的多断面交通流预测模型。利用船舶交通流多断面流量数据的时间序列进行多维线性回归,并转化为状态空间模型形式;在此基础上由卡尔曼滤波算法对交通流量进行递推预测,得到多断面交通流的预测值。作为实证研究,分别对武汉长江大桥、武汉长江二桥2个断面,以及长江重庆段朝天门、万州、巫山3个断面进行实际数据分析来验算模型的有效性,并与单断面多维线性回归预测方法进行对比。结果表明,使用状态空间模型得到的武汉长江大桥、二桥预测结果的平均相对误差分别减少4.59%,0.97%;而重庆段3个连续观测点采用状态空间法预测比使用时间序列预测平均绝对误差和平均相对误差均有不同程度的降低,其中平均相对误差分别降低1.08%,4.28%, 3 .54%。因此,在不同时间维度上,该模型有助于提高多断面交通流预测精度。
推荐文章
基于非凸低秩稀疏约束的船舶交通流量预测
船舶交通流量
预测
非凸优化
交替方向乘子法
广义迭代阈值算法
船舶交通流量预测的灰色神经网络模型
船舶交通量
灰色模型
神经网络
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
优化的长山水道船舶交通流量灰色系统预测模型
水路运输
船舶交通流量
灰色预测
GM(1,1)优化模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于状态空间的连续断面船舶交通流量预测研究
来源期刊 交通信息与安全 学科 交通运输
关键词 船舶交通流 时间序列 状态空间 卡尔曼滤波
年,卷(期) 2015,(2) 所属期刊栏目 方法研究与探讨
研究方向 页码范围 51-56
页数 6页 分类号 U675.5+8
字数 4757字 语种 中文
DOI 10.3963/j.issn1674-4861.2015.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪洋 武汉理工大学智能交通系统研究中心 38 188 7.0 11.0
2 吴兵 武汉理工大学智能交通系统研究中心 32 240 9.0 14.0
3 吴康 武汉理工大学智能交通系统研究中心 1 2 1.0 1.0
4 谢磊 武汉理工大学智能交通系统研究中心 9 27 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (42)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
船舶交通流
时间序列
状态空间
卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
论文1v1指导