Sim and Forger have proposed a mathematical model of circadian pacemaker neurons in the suprachiasmatic nucleus (SCN). This model, which has been formulated on the Hodgkin-Huxley mo-del, is described by a system of nonlinear ordinary differential equations. An important feature of the SCN neurons observed in electrophysiological recording is spontaneous repetitive spiking, which is reproduced using this model. In the present study, numerical simulation analysis of this model was performed to evaluate variations in two system parameters of this model: the maximal conductance of calcium current (gCa) and the maximal conductance of sodium current (gNa). Simulation results revealed the spontaneous repetitive spiking states of the model in the (gCa, gNa)-pa-rameter space.