摘要:
植被覆盖度是衡量地表植被状况、指示生态环境变化的一个重要指标,也是许多学科的重要参数.传统的测量方法难以获取时间连续的面状数据,且耗时、耗力,很难大范围推广.遥感估算方法虽然可以弥补传统方法的不足,但由于云覆盖等天气条件的影响,获得同一时相覆盖整个研究区的遥感影像非常困难,时相的差异必然导致研究结果产生误差.针对植被覆盖度这一重要生态参数,结合低分辨率遥感数据的时间优势和中高分辨率遥感数据的空间优势,提出一种时相变换方法,将源于中高分辨率影像的植被覆盖度变换到研究需要的时相上.首先,利用像元二分模型计算MODIS尺度的时间序列植被覆盖度,并利用已经获得的SPOT影像计算其获取时相上的植被覆盖度;其次,利用土地利用图划分植被覆盖类型,并利用MODIS数据和土地利用数据之间的空间对应关系制作MODIS像元内各类植被覆盖的面积百分比数据;再次,利用面积百分比数据提取各类植被覆盖的纯像元,结合MODIS植被覆盖度时间序列,从而提取各类植被覆盖纯像元的植被覆盖度时间序列曲线;最后利用像元分解的方法提取MODIS像元内各类植被覆盖组分的植被覆盖度的变化规律,将其应用到该组分对应位置上SPOT像元的植被覆盖度上,从而将其变换到所需要的时相上.在密云水库上游进行试验,将覆盖研究区的10景SPOT5多光谱影像计算的植被覆盖度统一变换到7月上旬,结果显示:视觉效果上明显好转,且空间上连续一致;变换前后植被覆盖度的统计量对比结果也符合植被生长规律;利用外业样点数据与对应位置的植被覆盖度变换结果进行回归分析,结果发现各植被覆盖类型的R2均在0.8左右,表明变换结果与实测值非常接近,时相变换的效果较好,从而可以很好地促进相关研究精度的提高.