结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF).该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法2个方面对经典非局部均值滤波算法进行适当改进,将改进后的非局部均值滤波算法(INLMF)应用于处理高频分解系数,然后将滤波后的高频分解系数与低频分解系数进行重构,得到去噪后的图像,最后对去噪后图像采用非负支撑域有限递归逆滤波(Non-negativity and Support Constraints Recursive Inverse Filtering,NAS-RIF)算法进行图像复原,以尽可能消除因滤波造成的图像失真.测试结果表明,本文算法滤波效果优于NLMF及其已有的改进算法.