基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种改进的基于相似性约束的人脸超分辨率重建算法,采用迭代计算的方式将训练过程和学习过程整合在一起。首先从训练集中遴选出与待重建人脸最相似的训练库人脸参与迭代过程,随着迭代次数的增加,重建得到的高分辨率人脸越来越接近于原始高分辨率人脸;其中每次迭代分别统计待重建低分辨率人脸和训练集本次迭代参与的低分辨率人脸的相似性以及与训练集本次迭代参与的高分辨率人脸在局部结构上的相似性,以减少流形学习中低维空间到高维空间的一对多映射的限制。实验结果表明,与其他算法相比,文中所提的人脸重建算法不仅具有较低的空间复杂度,并且具有更好的主观和客观效果。
推荐文章
基于在线字典学习的人脸超分辨率重建
在线字典学习
超分辨率重建
含噪人脸图像
稀疏编码
压缩感知和相似性约束的图像超分辨率重构算法
超分辨率
压缩感知
测量域字典分类
非局部相似
联合重构
基于L1/2正则化和局部纹理约束的人脸超分辨率图像重建
稀疏表示
人脸图像
图像重建
L1/2正则化
局部纹理约束
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相似性约束的人脸超分辨率重建算法
来源期刊 计算机技术与发展 学科 工学
关键词 迭代 相似性约束 流形学习 人脸重建
年,卷(期) 2015,(8) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 58-61,66
页数 5页 分类号 TP301.6
字数 3403字 语种 中文
DOI 10.3969/j.issn.1673-629X.2015.08.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 干宗良 南京邮电大学图像处理与图像通信江苏省重点实验室 69 440 13.0 17.0
2 杨文峰 南京邮电大学图像处理与图像通信江苏省重点实验室 2 4 2.0 2.0
3 刘丹霞 南京邮电大学图像处理与图像通信江苏省重点实验室 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (20)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迭代
相似性约束
流形学习
人脸重建
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导