We investigate the effect of the Majorana Fermions which are formed at the boundary of a p-wave superconductor. When the Majorana overlapping energy is finite we construct the scattering matrix S by mapping the Majorana zero mode to Fermions for which coherent states are defined and a path integral is obtained. The path integral is used to compute the scattering matrix in terms of the electrons in the leads. This method is suitable for computing the conductivity. We investigate a chiral Majorana Hamiltonian and show that in the absence of vortices the conductivity vanishes. We compute the conductivity for p wave superconductor coupled to two metallic leads, and we show that when the overlapping energy between the two Majorana fermions is finite, the Andreev Crossed reflection conductance is finite.