基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this work an algorithm to predict short times series with missing data by means energy associated of series using artificial neural networks (ANN) is presented. In order to give the prediction one step ahead, a comparison between this and previous work that involves a similar approach to test short time series with uncertainties on their data, indicates that a linear smoothing is a well approximation in order to employ a method for uncompleted datasets. Moreover, in function of the long- or short-term stochastic dependence of the short time series considered, the training process modifies the number of patterns and iterations in the topology according to a heuristic law, where the Hurst parameter H is related with the short times series, of which they are considered as a path of the fractional Brownian motion. The results are evaluated on high roughness time series from solutions of the Mackey-Glass Equation (MG) and cumulative monthly historical rainfall data from San Agustin, Cordoba. A comparison with ANN nonlinear filters is shown in order to see a better performance of the outcomes when the information is taken from geographical point observation.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Forecasting Short Time Series with Missing Data by Means of Energy Associated to Series
来源期刊 应用数学(英文) 学科 医学
关键词 Artificial NEURAL Networks RAINFALL Forecasting ENERGY ASSOCIATED to Time SERIES Hurst’s Parameter
年,卷(期) 2015,(9) 所属期刊栏目
研究方向 页码范围 1611-1619
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
NEURAL
Networks
RAINFALL
Forecasting
ENERGY
ASSOCIATED
to
Time
SERIES
Hurst’s
Parameter
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导