作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的协同过滤推荐算法面临严峻的数据稀疏性和推荐实时性困境,推荐质量明显不高。为提高推荐效果,首先对基于云模型的用户评分项和相似性度量方法展开研究。然后定义基于云模型的推荐系统信任约束,并改进主观信任云模型的约束函数、信任变化云模型的信任变化函数。最后提出一种基于云模型的协同过滤推荐算法。实验结果表明,相比传统算法,该算法在用户评分数据稀疏的状况下仍然可以取得良好的推荐效果,具有较高的实用价值。
推荐文章
基于协同过滤算法的旅游景点推荐模型研究
协同滤波
DOM
用户相似度
近邻集合
旅游景点
推荐模型
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于云模型的协同过滤推荐算法
来源期刊 计算机系统应用 学科
关键词 云模型 相似性度量 约束函数 信任变化函数 协同过滤推荐
年,卷(期) 2015,(5) 所属期刊栏目 软件技术?算法
研究方向 页码范围 140-146
页数 7页 分类号
字数 8535字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 万年红 浙江东方职业技术学院工程技术系 35 93 7.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (1006)
参考文献  (9)
节点文献
引证文献  (14)
同被引文献  (27)
二级引证文献  (4)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(15)
  • 参考文献(2)
  • 二级参考文献(13)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(6)
  • 引证文献(6)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(7)
  • 引证文献(4)
  • 二级引证文献(3)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
云模型
相似性度量
约束函数
信任变化函数
协同过滤推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
论文1v1指导