基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对极限学习机算法中输出波动大与模型不稳定的问题,提出采用切换模型极限学习算法进行超短期电力负荷预测的方法。该算法通过切换模型准则,将建立的多个神经网络模型分为误差较小的保持模型和误差较大的更新模型两部分。保持模型无需进行在线更新,减低了模型输出的波动性;更新模型则需采取随机方法进行在线更新,使得训练误差达到最小,提高模型的泛化能力。通过对某地区电力负荷的预测仿真,结果表明了所提方法提高了预测速度,节省了计算时间,具有更佳的泛化能力和预测精度。
推荐文章
短期负荷预测的集成改进极端学习机方法
极端学习机
短期负荷预测
训练
集成技术
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测
极限学习机
混沌纵横交叉
粒子群算法
预测精度
短期负荷预测
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
基于改进极限学习机的短期电力负荷预测方法
短期负荷预测
极限学习机
结构风险
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于切换模型极限学习机的超短期负荷预测
来源期刊 电测与仪表 学科 工学
关键词 极限学习机 切换模型 负荷预测 更新模型 预测精度
年,卷(期) 2015,(13) 所属期刊栏目 率兼容性方案
研究方向 页码范围 71-76,110
页数 7页 分类号 TM76
字数 4856字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邓明丽 国网四川省电力公司技能培训中心 3 3 1.0 1.0
2 张晶 国网四川省电力公司技能培训中心 6 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (103)
共引文献  (404)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (3)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(12)
  • 参考文献(1)
  • 二级参考文献(11)
2003(14)
  • 参考文献(0)
  • 二级参考文献(14)
2004(14)
  • 参考文献(1)
  • 二级参考文献(13)
2005(10)
  • 参考文献(4)
  • 二级参考文献(6)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(7)
  • 参考文献(2)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
极限学习机
切换模型
负荷预测
更新模型
预测精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电测与仪表
半月刊
1001-1390
23-1202/TH
大16开
哈尔滨市松北区创新路2000号
14-43
1964
chi
出版文献量(篇)
7685
总下载数(次)
22
总被引数(次)
55393
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导