作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
协同过滤技术是目前应用最多的一种推荐技术,这项技术从用户提供的信息中展开发掘,按“物以类聚,人以群分”的原则产生和目标用户(或项目)相似性高的最近邻,从中预测评分,进而产生推荐。但是由于评分信息稀疏化就会造成无法适应用户兴趣,而且推荐的实时性差等问题。针对上述问题,文章提出了一种带有改进的用户-项目类型喜好相似性的计算方法完善用户兴趣改变的问题,并且结合了优化后的双重k-means聚类,使搜索最近邻的范围大大减少,从而提高了推荐算法的实时性。实验结果表明,该优化后的协同过滤推荐算法能通过时间相似性更好地适应用户兴趣的变化,推荐的精度最精确,效果更易使用户满意。
推荐文章
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于用户兴趣度和特征的优化协同过滤推荐
用户兴趣度
用户特征
贝叶斯算法
协同过滤
用户相似度
基于用户多属性与兴趣的协同过滤算法
协同过滤
冷启动
数据稀疏性
用户多属性
隐性标签
结合用户兴趣度聚类的协同过滤推荐算法
协同过滤
推荐算法
用户兴趣
K-means聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户兴趣和双重聚类融合的协同过滤算法的优化研究
来源期刊 无线互联科技 学科
关键词 协同过滤 用户兴趣 双重聚类 K-means优化 调和相似性计算
年,卷(期) 2015,(5) 所属期刊栏目 实验研究
研究方向 页码范围 124-127
页数 4页 分类号
字数 3974字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 翟烁 北京工业大学软件学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (35)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (6)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
用户兴趣
双重聚类
K-means优化
调和相似性计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线互联科技
半月刊
1672-6944
32-1675/TN
16开
江苏省南京市
2004
chi
出版文献量(篇)
18145
总下载数(次)
78
总被引数(次)
27320
论文1v1指导