基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Water deficits are major limiters of crop yield worldwide. The detection of water deficits can be difficult. Measurements of the aerial and soil environment are often used to infer the water status and detect water deficits. Since crop yield accumulates incrementally and cumulatively over seasonal time scales, continuous direct monitoring of the water status of the crop may provide needed insight into plant/environment interactions. Canopy temperature can be measured near continuously on seasonal scales in the field. Cotton was grown under 11 irrigation regimes in 2009 and 2010 with water deficits from 26% to 86% of crop evapotranspiration. Yield varied accordingly from ~500 kg·ha-1 to ~2600 kg·ha-1. Canopy temperature was measured on a 15-minute interval for ~65 days in each year. Yield was described by a linear function of total water (irrigation + rain) for each year with similar slopes and different intercepts. When canopy temperature was used as a surrogate for total water, yield was linearly related to daytime leaf-to-air VPD, mean seasonal canopy temperature, mean seasonal daytime canopy temperature, and cumulative seasonal daytime canopy temperature. Limiting the analysis to daytime periods improved the ability to account for yield variation. Mean daytime seasonal canopy temperature and cumulative seasonal daytime temperature were most effective in accounting for yield variation across the seasons with a single regression line for both years.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Continuously Monitored Canopy Temperature as a Proxy for Plant Water Status
来源期刊 美国植物学期刊(英文) 学科 农学
关键词 CANOPY Temperature Cotton DRIP IRRIGATION EVAPOTRANSPIRATION GOSSYPIUM hirsutum Yield
年,卷(期) mgzwxqkyw_2015,(14) 所属期刊栏目
研究方向 页码范围 2287-2302
页数 16页 分类号 S5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CANOPY
Temperature
Cotton
DRIP
IRRIGATION
EVAPOTRANSPIRATION
GOSSYPIUM
hirsutum
Yield
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国植物学期刊(英文)
月刊
2158-2742
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1814
总下载数(次)
0
论文1v1指导