基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统火灾探测系统对火灾特征信号响应灵敏度均匀性差,而基于神经网络的智能处理方法又存在泛化能力差和过学习等问题.建立了一种基于支持向量回归机(SVR)模式识别方法与传感器阵列相结合火灾预警模型.SVR方法根据统计学习理论中结构风险最小化原则,将气体传感器、烟雾传感器和温度传感器组成的传感器阵列数据进行融合,将复杂的非线性问题转化成了高维平面内的线性问题,克服了传统方法和神经网络方法的缺陷.实验结果表明,使用支持向量回归机的火灾预警模型的预测精度优于神经网络方法,提高了火灾预警系统的可靠性和准确度.
推荐文章
基于SVR的高层建筑复合式火灾预警系统设计
高层建筑火灾
复合式火灾预警系统
SVR预警模型
火灾报警系统的应用研究
火灾报警系统
高层建筑
综合商场
布线工程
数据融合技术在火灾自动探测中的应用研究
火灾探测
多传感器
数据融合
火灾预警
工厂仓库火灾预警系统的设计
火灾预警
STM32F407
OV7670
NRF905
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 火灾预警的SVR应用研究
来源期刊 测控技术 学科 工学
关键词 支持向量回归机 火灾预警 模式识别 传感器阵列
年,卷(期) 2015,(8) 所属期刊栏目 数据采集与处理
研究方向 页码范围 19-22
页数 4页 分类号 TD75
字数 2561字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 武莎莎 淮阴工学院电子与电气工程学院 10 27 3.0 5.0
2 叶小婷 淮阴工学院电子与电气工程学院 11 25 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (38)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (12)
二级引证文献  (2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量回归机
火灾预警
模式识别
传感器阵列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导