基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以小波分析和BP神经网络为基础,构建了小波神经网络预测模型.使用CA6140车床对氟金云母陶瓷进行了干车削试验,并用三向测力仪测量了切削过程的切削力变化趋势.基于小波包中的Wpbmpen函数对切削力信号进行了降噪处理,切削力信号在降噪后有明显改善,能更形象地表达出切削力的变化趋势.基于小波神经网络对切削力进行了预测,结果表明:小波神经网络预测值、信号降噪处理值和试验值都非常相近,说明切削力在预测过程中具有一定的可靠性,小波神经网络预测前对切削力信号的降噪处理是合理的.
推荐文章
基于小波神经网络预测多相动态管道腐蚀速率
神经网络
因素有效性
结构
腐蚀
预测
基于小波神经网络的机械故障预测
小波网络
机械故障
预测
基于小波神经网络的网络流量预测研究
小波神经网络
网络流量
预测研究
训练样本
基于小波神经网络模型的含沙量预测研究
小波函数
BP神经网络
含沙量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络的工程陶瓷动态车削力预测
来源期刊 工具技术 学科 工学
关键词 车削力 预测 小波神经网络 工程陶瓷 小波降噪
年,卷(期) 2015,(9) 所属期刊栏目 测试与仪器
研究方向 页码范围 81-84
页数 4页 分类号 TG501|TH161
字数 2152字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马廉洁 东北大学秦皇岛分校控制工程学院 44 66 4.0 6.0
2 李琛 东北大学秦皇岛分校控制工程学院 12 24 3.0 4.0
3 田俊超 东北大学秦皇岛分校控制工程学院 8 28 2.0 5.0
4 尤轲 东北大学秦皇岛分校控制工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (60)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(13)
  • 参考文献(1)
  • 二级参考文献(12)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车削力
预测
小波神经网络
工程陶瓷
小波降噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工具技术
月刊
1000-7008
51-1271/TH
大16开
成都市府青路二段24号
62-32
1964
chi
出版文献量(篇)
9497
总下载数(次)
13
总被引数(次)
34788
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导