原文服务方: 机械传动       
摘要:
针对齿轮箱振动信号的非线性和非平稳性,提出一种多重分形和粒子群优化的支持向量机(PSO-SVM)相结合的故障诊断方法.首先采用短时分维作为模糊控制参数的分形滤波器对背景噪声较大的齿轮箱振动信号进行滤波降噪;其次引入多重分形谱算法对滤波后信号进行分析,发现多重分形特征量△a(q)、f(a(q))max、盒子维数Db能很好地反映齿轮箱工作状态;最后对支持向量机(SVM)的参数利用粒子群优化(PSO)算法进行优化,并将多重分形特征量分别作为SVM和PSO—SVM的输入参数以识别齿轮箱故障.结果表明,基于粒子群优化的支持向量机可以提高分类正确率.同时证明了基于多重分形和PSO-SVM在齿轮箱故障诊断中的有效性.
推荐文章
基于多重分形与SVM的齿轮箱故障诊断研究
多重分形
支持向量机
故障诊断
多重分形谱
广义维数
粒子群优化算法
基于MF-DFA和SVM的齿轮箱故障诊断
多重分形
去趋势波动分析
支持向量机
故障诊断
基于多重分形去趋势互相关分析的齿轮箱故障诊断
多重分形
去趋势互相关分析
齿轮箱
故障诊断
基于分形理论齿轮箱故障诊断研究
应用统计数学
齿轮箱
故障诊断
机械故障
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多重分形和PSO-SVM的齿轮箱故障诊断
来源期刊 机械传动 学科
关键词 齿轮箱 分形理论 多重分形 PSO-SVM 故障诊断
年,卷(期) 2015,(2) 所属期刊栏目 试验分析
研究方向 页码范围 132-136
页数 5页 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘宏侠 359 2630 23.0 34.0
2 赵卫伟 3 18 2.0 3.0
3 李莎 12 6 2.0 2.0
4 张君东 4 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (101)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(8)
  • 参考文献(1)
  • 二级参考文献(7)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
齿轮箱
分形理论
多重分形
PSO-SVM
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导