原文服务方: 现代电子技术       
摘要:
针对于稀疏编码在行人检测问题中提取的特征维数高和不能够有效描述行人的问题,提出了一种基于多重稀疏字典直方图的特征提取方法。通过稀疏表示方法,预先学习多个不同稀疏度的字典,分别利用每一个字典对行人图像进行稀疏编码,统计每个字典中对应稀疏编码单元的分布直方图作为行人图像的特征描述子。该方法提取到的特征维数低,并且能够有效地描述行人,具有良好的检测性能。
推荐文章
基于稀疏编码字典学习的疵点检测
疵点检测
稀疏编码
K-SVD字典学习
基于稀疏 K-SVD 字典的图像融合方法
稀疏K-SVD
解析字典
学习字典
图像融合
基于字典优化的稀疏表示的视频镜头分类
稀疏表示
字典优化
视频镜头分类
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多重稀疏字典的行人检测方法
来源期刊 现代电子技术 学科
关键词 行人检测 特征提取 稀疏表示 多重稀疏 字典
年,卷(期) 2015,(2) 所属期刊栏目 计算机应用技术 -- 图形图像处理
研究方向 页码范围 83-87
页数 5页 分类号 TN919-34|TP391.4
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘亚洲 南京理工大学计算机科学与工程学院 9 16 2.0 3.0
2 袁文 南京理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
特征提取
稀疏表示
多重稀疏
字典
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导