原文服务方: 现代电子技术       
摘要:
为克服小波变换在二维或更高维度空间分析中的缺陷,提高图像融合质量,提出基于二代Curvelet变换的图像融合改进算法。引入可以有效分析图像中的曲线奇异性,能更加合理处理图像边缘信息的Curvelet变换对图像进行分解,对图像分解后的低频部分采用自适应阈值的区域方差高斯加权融合方法,增加图像像素之间的关联,并有效保留细节和边缘。对高频部分采用区域能量融合方法来降低噪声,增强图像的细节。采用该算法对多组不同图像进行融合实验,并用信息熵、交叉熵、相关系数、空间频率等对融合图像进行客观评价。实验结果表明,该算法优于传统的融合规则和算法,能在保持更好清晰度的同时获得更丰富的图像内容。
推荐文章
基于对偶树复小波-Curvelet变换的自适应多传感图像融合算法
多传感图像
对偶树复小波变换
Curvelet变换
自适应
融合算法
基于Curvelet和2DPCA的遥感图像融合算法
遥感融合
二维主成分分析
曲波变换
光谱特征
基于区域特性的Contourlet域多聚焦图像融合算法
图像融合
Contourlet变换
多聚焦
区域能量
基于小波-Contourlet变换和区域能量融合规则的图像融合算法
小波-Contourlet变换
区域能量
Cycle Spinning
图像融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于区域特性的Curvelet变换图像融合算法
来源期刊 现代电子技术 学科
关键词 图像融合 Curvelet变换 自适应阈值 区域特性 区域频率
年,卷(期) 2015,(2) 所属期刊栏目 计算机应用技术 -- 图形图像处理
研究方向 页码范围 77-82
页数 6页 分类号 TN919-34|TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙权森 南京理工大学计算机科学与工程学院 112 1385 19.0 32.0
2 王坤臣 南京理工大学计算机科学与工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (13)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (25)
二级引证文献  (6)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(5)
  • 参考文献(4)
  • 二级参考文献(1)
2013(5)
  • 参考文献(4)
  • 二级参考文献(1)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(4)
  • 引证文献(4)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
图像融合
Curvelet变换
自适应阈值
区域特性
区域频率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导