作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统序列超分辨率方法对低分辨率视频序列的要求较高,一旦序列中没有包含足够的信息,会造成重建高分辨率图像质量的下降。为此,提出一种结合稀疏编码模型的序列超分辨率算法。利用概率运动场从低分辨率序列中重建一幅高分辨率图像,根据自适应阈值确定重建有效和无效区域,使用稀疏编码模型对无效区域进行补全重建。实验结果表明,该算法可以采用序列自身的信息和稀疏字典中的信息来重建高分辨率图像,在序列信息有破缺时,与仅利用序列自身信息或仅利用单幅图像的算法相比,具有更好的鲁棒性和广泛的适用性。
推荐文章
单帧学习与多帧重建结合的超分辨率盲重建方法
超分辨率重建
模糊退化模型(PSF)辨识
参考信息块
模糊图像
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
融合低秩和稀疏表示的图像超分辨率重建算法
超分辨率重建
低秩矩阵恢复
稀疏重建
噪声
字典学习
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合稀疏编码模型的多帧图像超分辨率重建
来源期刊 计算机工程 学科 工学
关键词 超分辨率 稀疏编码 图像补全 非局部正则化 线性反问题
年,卷(期) 2015,(5) 所属期刊栏目 ?图形图像处理?
研究方向 页码范围 264-269,273
页数 7页 分类号 TP391
字数 6154字 语种 中文
DOI 10.3969/j.issn.1000-3428.2015.05.049
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙怡 大连理工大学信息与通信工程学院 49 425 11.0 19.0
2 卢健 大连理工大学信息与通信工程学院 4 221 1.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (10)
参考文献  (15)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(5)
  • 参考文献(5)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率
稀疏编码
图像补全
非局部正则化
线性反问题
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导