原文服务方: 现代电子技术       
摘要:
传统方法中对动态人脸识别采用的是单演局部主方向编码识别,通过分块子模式的加权融合进行人脸特征提取,因为人脸表情和姿态变化会导致识别结果出现误差。在智能视觉模式下,提出一种基于信息熵子模式主成分分析的动态人脸跟踪识别方法。基于特征状态空间重构方法,将人脸图像分成大小相等的子模块,对子模块进行信息熵特征提取,采用主成分分析方法进行人脸特征分类。仿真结果表明,采用该算法进行动态人脸跟踪识别,能有效实现人脸表情动态跟踪,人脸识别性能较好、精度较高,性能优于传统算法。
推荐文章
基于双目视觉动态跟踪的机器人标定
工业机器人
标定
定位误差
运动学模型
双目视觉
结合PCA的TLD人脸跟踪
在线学习
人脸跟踪
目标检测
跟踪模块
基于肤色分割的改进Camshift人脸跟踪算法
人脸跟踪
肤色分割
形态学操作
YCbCr空间
几何特征
Adaboost算法
Camshift
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于智能视觉的动态人脸跟踪
来源期刊 现代电子技术 学科
关键词 人脸识别 智能视觉 主成分分析 信息熵
年,卷(期) 2015,(24) 所属期刊栏目 计算机应用技术
研究方向 页码范围 12-15,18
页数 5页 分类号 TN911-34|TP391
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2015.24.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郝俊寿 内蒙古电子信息职业技术学院教务处 19 49 3.0 6.0
2 丁艳会 内蒙古电子信息职业技术学院数字媒体与艺术系 18 54 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (91)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (13)
二级引证文献  (5)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(9)
  • 参考文献(2)
  • 二级参考文献(7)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
人脸识别
智能视觉
主成分分析
信息熵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导