基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着互联网的飞速发展所带来的“信息过载”问题使准确的新闻推荐技术变得越来越重要。提出基于兴趣标签的个性化新闻推荐系统,利用Hadoop大数据平台,采用基于项的协同过滤算法,通过收集用户的浏览记录和兴趣标签,挖掘用户的主题兴趣,建立用户的兴趣模型,提高个性化推荐系统的准确性和可扩展性,具有良好的推荐效果。
推荐文章
基于用户关注度的个性化新闻推荐系统
个性化推荐
协作型过滤
用户关注度
推荐算法
基于潜在标签挖掘和细粒度偏好的个性化标签推荐
个性化标签推荐
潜在标签挖掘
贝叶斯个性化排序
成对交互张量分解
对于个性化推荐新闻的思考
算法
人文理性
工具理性
一种基于偏好的个性化标签推荐系统
标签
用户模型
模糊度
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于兴趣标签的个性化新闻推荐系统
来源期刊 福建电脑 学科
关键词 兴趣标签 用户模型 个性化推荐 协同过滤
年,卷(期) 2015,(3) 所属期刊栏目 基金项目论文
研究方向 页码范围 52-54
页数 3页 分类号
字数 3244字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何铮杰 武汉理工大学计算机科学与技术学院 1 2 1.0 1.0
2 张瑀 武汉理工大学计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (91)
共引文献  (402)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(9)
  • 参考文献(0)
  • 二级参考文献(9)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(19)
  • 参考文献(1)
  • 二级参考文献(18)
2008(17)
  • 参考文献(2)
  • 二级参考文献(15)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
兴趣标签
用户模型
个性化推荐
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建电脑
月刊
1673-2782
35-1115/TP
大16开
福州市华林邮局29号信箱
1985
chi
出版文献量(篇)
21147
总下载数(次)
86
总被引数(次)
44699
论文1v1指导