作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对比分析短时交通流预测模型,本文对BP神经网络的基本原理进行了分析,对BP神经网络算法进行设计,建立了基于BP神经网络的短时交通流预测模型。同时将其应用于短时交通流预测模型的仿真计算,利用某市路口的实测交通流数据来验证模型的可行性。仿真结果表明,BP神经网络算法具有较快的计算速度与较好的适应能力,该方法可以较好地应用于短时交通流预测。
推荐文章
基于BP神经网络的城市交通流预测研究
非线性
BP神经网络
交通流预测
人工智能
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 BP神经网络短时交通流预测模型研究
来源期刊 福建电脑 学科
关键词 短时交通流 预测模型 BP神经网络
年,卷(期) 2015,(3) 所属期刊栏目 基金项目论文
研究方向 页码范围 14-15,49
页数 3页 分类号
字数 1896字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡常俊 徐州工程学院信电工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (38)
参考文献  (1)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短时交通流
预测模型
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建电脑
月刊
1673-2782
35-1115/TP
大16开
福州市华林邮局29号信箱
1985
chi
出版文献量(篇)
21147
总下载数(次)
86
总被引数(次)
44699
论文1v1指导