原文服务方: 计算机测量与控制       
摘要:
为了解决MapReduce机制下算法通信时间占用比过高实际应用价值受限的问题,提出了基于Hadoop二阶段并行c-Means聚类算法;首先,采用成员管理协议方式实现成员管理与MapReduce降低操作的同步化方法,改进MapReduce机制下的MPI通讯管理方法;其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法,通过第一阶段的缓冲进一步降低第二阶段Ma-pReduce操作的数据量,尽可能降低大数据带来的对算法负面影响;通过仿真实验表明该算法在处理大数据上的性能表现较为优异;该算法在大规模数据集上的并行率和加速比都优于小型数据集上的表现,说明了该算法能够实时根据数据量的大小对自身进行调整.
推荐文章
基于Hadoop二阶段并行模糊c-Means聚类算法
二阶段
模糊c-Means
大数据
聚类
并行
入侵检测
基于MapReduce并行化计算的大数据聚类算法
大数据
MapReduce
并行计算
数据聚类
基于云计算的并行K-means聚类算法研究
云计算技术
Hadoop
MapReduce
K-means算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Hadoop二阶段并行模糊c-Means数据聚类算法
来源期刊 计算机测量与控制 学科
关键词 二阶段 模糊c-Means 大数据 数据聚类 hadoop
年,卷(期) 2015,(3) 所属期刊栏目 算法、设计与应用
研究方向 页码范围 842-846
页数 5页 分类号 TP312
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 师智斌 中北大学计算机与控制工程学院 13 39 4.0 5.0
2 高献卫 中北大学计算机与控制工程学院 3 16 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (573)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (21)
二级引证文献  (11)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
二阶段
模糊c-Means
大数据
数据聚类
hadoop
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导