基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于朴素贝叶斯模型的EM算法经常被应用到情感分类中,但是其存在自身的缺点,当训练样本的类别不平衡时,分类器会越来越偏向于某一类,导致结果变差。本文在EM算法的基础上提出了一种改进的算法,来解决这一问题,并且通过实验我们可以发现该算法要优于普通的EM算法,证明了该算法的有效性以及合理性。
推荐文章
一种改进的降噪自编码神经网络不平衡数据分类算法
神经网络
过采样
不平衡数据
分类
一种改进EM算法的跨领域情感分类方法
跨领域情感分类
EM算法
特征迁移
一种处理不平衡大数据的并行随机森林算法
不平衡大数据
MapReduce
随机森林
代价敏感
分层自助抽样
一种双重特征选择的不平衡复杂网络链接分类模型
链接分类
Relief
K-均值
特征选择
mRMR
不平衡问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种解决不平衡情感分类的EM改进算法
来源期刊 电子测试 学科 工学
关键词 情感分类 不平衡样本 CNBEM
年,卷(期) 2015,(5) 所属期刊栏目 理论与算法
研究方向 页码范围 49-51
页数 3页 分类号 TP391
字数 2102字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毛海斌 南京理工大学计算机科学与工程学院 1 2 1.0 1.0
2 张潇笑 南京理工大学计算机科学与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (14)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
情感分类
不平衡样本
CNBEM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测试
半月刊
1000-8519
11-3927/TN
大16开
北京市100098-002信箱
82-870
1994
chi
出版文献量(篇)
19588
总下载数(次)
63
论文1v1指导