基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose:We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications.Design/methodology/approach:First,topics are generated from the obesity corpus by using the latent Dirichlet allocation(LDA) algorithm and time series of keyword search trends in Google Trends are obtained.We then establish the structural time series model using data from January 2004 to December 2012,and evaluate the model using data from January 2013.We employ a state-space model to separate different non-regression components in an observational time series(i.e.the tendency and the seasonality) and apply the 'spike and slab prior' and stepwise regression to analyze the correlations between the regression component and the social media attention.The two parts are combined using Markov-chain Monte Carlo sampling techniques to obtain our results.Findings:The results of our study show that(1) the number of publications on child obesity increases at a lower rate than that of diabetes publications;(2) the number of publication on a given topic may exhibit a relationship with the season or time of year;and(3) there exists a correlation between the number of publications on a given topic and its social media attention,i.e.the search frequency related to that topic as identified by Google Trends.We found that our model is also able to predict the number of publications related to a given topic.Research limitations:First,we study a correlation rather than causality between topics’ trends and social media.As a result,the relationships might not be robust,so we cannotpredict the future in the long run.Second,we cannot identify the reasons or conditions that are driving obesity topics to present such tendencies and seasonal patterns,so we might need to do 'field' study in the future.Third,we need to improve the efficiency of our model by finding more efficient variable selection models,because the stepwise regression method is time consuming,especially for a large
推荐文章
An experimental study of interaction between pure water and alkaline feldspar at high temperatures a
Alkaline feldspar
Autoclave
High-temperature and high-pressure experiments
Theoretical calculation of equilibrium Mg isotope fractionation between silicate melt and its vapor
Equilibrium Mg isotope fractionation
Force constant
Structural optimization
RPFR
My Understanding of Sociolinguistics as a Discipline
社会语言学
跨学科
传统
方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Understanding the Correlations between Social Attention and Topic Trends of Scientific Publications
来源期刊 数据与情报科学学报:英文版 学科 社会科学
关键词 《数据与情报科学学报》 英文版
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 28-49
页数 22页 分类号 G2
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
《数据与情报科学学报》
英文版
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导