基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对多变量时间序列异常检测问题进行研究,提出基于改进ADPP的多变量时间序列异常检测算法IADPP.IADPP算法引入适用于多变量时间序列的张量相似性度量SSOTPCA,并以此相似性度量构造序列集的k-近邻图,在构造的k-近邻图上计算多变量时间序列的异常系数.研究结果表明,IADPP算法克服了原有ADPP算法不支持多变量时间序列和要求密度均匀的缺陷,取得了较好的检测结果.
推荐文章
基于KPCA的多变量时间序列数据异常检测方法研究
多变量时间序列
异常检测
KPCA
vMF分布
基于改进RBF网络的多变量序列建模和预测
径向基函数神经网络
多变量
聚类中心
预测
多变量时间序列的模糊决策树挖掘
数据挖掘
时间序列
模糊决策树
基于数据块的多变量时间序列相似性度量
多变量时间序列
相似性度量
共同主成分分析
二维奇异值分解
分块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进ADPP的多变量时间序列异常检测
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 多变量时间序列 异常检测 张量相似性度量 k-近邻图
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 164-169
页数 6页 分类号 TP311
字数 4477字 语种 中文
DOI 10.7631/issn.1000-2243.2016.02.0164
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晓云 福州大学数学与计算机科学学院 76 590 13.0 21.0
2 董红玉 福州大学数学与计算机科学学院 4 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (14)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多变量时间序列
异常检测
张量相似性度量
k-近邻图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导