基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在高光谱图像中,线性混合像元和非线性混合像元同时存在,若采用基于单一混合模型的解混算法,会使解混精度降低。因此,提出采用神经网络对高光谱图像中的像元混合模型进行估计,然后针对不同的混合模型进行相应的像元解混。像元解混时,在目标函数中添加丰度非负和丰度和为一约束项,利用差分搜索算法优化求解目标函数以实现高光谱图像的解混。仿真和实际高光谱数据实验表明,本算法提高了解混精度,适用于线性和非线性混合模型。
推荐文章
基于ANN端元估计的高光谱图像解混算法
高光谱图像解混
人工神经网络
端元估计
差分搜索算法
基于差分搜索的高光谱图像解混算法
高光谱图像解混
差分搜索算法
盲源分离
丰度非负约束
丰度和为一约束
互信息
基于拉格朗日的高光谱解混算法研究
光谱解混
相似端元
端元提取
丰度估计
解混算法
基于正则化方法的遥感图像混合像元分解
遥感
混合像元
最小二乘
正则化
端元
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于像元混合模型估计的高光谱图像解混
来源期刊 红外技术 学科 工学
关键词 高光谱图像解混 神经网络 像元混合模型 差分搜索算法
年,卷(期) 2016,(2) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 132-137
页数 6页 分类号 TP751
字数 4505字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈雷 天津大学精密仪器与光电子工程学院 50 248 10.0 13.0
10 张立毅 天津大学电子信息工程学院 116 611 13.0 18.0
14 李锵 天津大学电子信息工程学院 74 624 12.0 22.0
15 刘静光 天津大学电子信息工程学院 5 14 2.0 3.0
16 孙彦慧 天津大学电子信息工程学院 3 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (27)
参考文献  (13)
节点文献
引证文献  (5)
同被引文献  (10)
二级引证文献  (0)
1981(2)
  • 参考文献(1)
  • 二级参考文献(1)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(3)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像解混
神经网络
像元混合模型
差分搜索算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
总被引数(次)
30858
论文1v1指导