针对EB(extreme binning)算法重复数据删除率低,磁盘I/O开销大的缺陷,提出基于多特征匹配和Bloom filter的重复数据删除算法DBMB(deduplication based on multi-feature matching and Bloom filter).将小文件聚合为局部性文件单元,作为一个整体进行去重处理,采用最大、最小以及中间数据块ID的多重相似性特征进行匹配,并基于Bloom filter优化磁盘数据块的查找和匹配过程.结果表明,DBMB算法能有效提升重复数据删除率,降低算法执行时间,同时减少处理小文件的内存开销,性能提升显著.