基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
窃电行为严重危害了电网的正常运行,并且损害了国家和电力企业的利益。针对现有异常用电检测方法的不足,提出一种基于粒子群算法的异常用电检测新方法。以用户历史负荷数据为基础,采用粒子群算法提取用户相同行业的负荷模式曲线和用户历史数据的负荷模式曲线,并根据用户考察日负荷曲线与上述两种负荷模式匹配的不同特点,使用不同的负荷数据预处理方式以及模式匹配评价方法。实例分析表明,新方法能有效检测到异常用电的情况,验证了模型的有效性。
推荐文章
基于门控循环单元的非均衡数据驱动异常用电检测方法
异常用电检测
异常用电行为
数据非均衡
边界合成少数类过采样
门控循环单元
时序特征
基于智能电表大数据的异常用电检测
监督学习
非技术损失
智能电表
超梯度提升树
基于粒子群优化的异常入侵检测算法的研究
粒子群算法
动态聚类分析
入侵检测
适应度函数
基于聚类粒子群算法网络异常检测模型研究
网络异常
均值聚类
遗传算法
入侵检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群算法的异常用电检测方法
来源期刊 东北电力技术 学科 工学
关键词 异常用电检测 粒子群算法 负荷模式 模式匹配
年,卷(期) 2016,(5) 所属期刊栏目 经验交流
研究方向 页码范围 56-59
页数 4页 分类号 TP393.08
字数 3524字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭壮志 29 253 8.0 15.0
2 卢海明 13 99 4.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (37)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (59)
二级引证文献  (4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(6)
  • 引证文献(2)
  • 二级引证文献(4)
研究主题发展历程
节点文献
异常用电检测
粒子群算法
负荷模式
模式匹配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北电力技术
月刊
1004-7913
21-1282/TM
大16开
沈阳市和平区四平街39号
1980
chi
出版文献量(篇)
4056
总下载数(次)
9
论文1v1指导