基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将稳定度自适应重加权采样特征变量选择算法用于支持向量机定性分析(Support vector machine-stability competitive adaptive reweighted sampling,SVM-SCARS).该算法通过对数据多次采样建模计算各变量的稳定度值,稳定度值能更加客观准确地评估变量在建模中的作用,因此可作为变量重要性的评价依据.通过循环迭代方式,采用自适应重加权采样技术逐步筛选变量,然后以每次循环所得变量子集建立SVM模型,并以模型交叉验证分类正确率(Correct classification rate of cross validation,CCRCV)评估子集优劣,确定最优特征变量子集.将该算法结合漫反射近红外光谱技术建立了制浆造纸常用木材的树种识别模型,实现了对4种桉木和2种相思木的快速识别分类.最终共筛选出15个特征变量建立分类模型,模型对各树种分类的正确率达97.9%,具有较好的分类效果.与全光谱模型和递归特征消除支持向量机模型相比,SVM-SCARS能够筛选出更少的特征变量,且模型具有更好的预测性能和稳定性.研究结果表明,SVM-SCARS算法能够有效优化光谱特征变量,提高近红外在线分析模型在木材材性分析中的稳健性和适用性.
推荐文章
基于支持向量机的飞机图像识别算法
飞机图像识别
支持向量机
特征向量
神经网络
基于边界矩和支持向量机的火焰识别算法
火焰识别
边界矩不变量
支持向量机
序列最小最优化算法
基于图像特征及改进支持向量机算法的交通标志识别
图像特征
支持向量机
模拟退火算法
交通标志识别
基于多特征的支持向量机印鉴识别
Gabor滤波器
极坐标变换
奇异值分解
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的近红外特征变量选择算法用于树种快速识别
来源期刊 分析测试学报 学科 化学
关键词 近红外光谱 支持向量机 变量选择 树种识别 制浆造纸
年,卷(期) 2016,(1) 所属期刊栏目 研究简报
研究方向 页码范围 101-106
页数 6页 分类号 O657.3|F762.4
字数 4280字 语种 中文
DOI 10.3969/j.issn.1004-4957.2016.01.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (11)
同被引文献  (51)
二级引证文献  (4)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
近红外光谱
支持向量机
变量选择
树种识别
制浆造纸
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
分析测试学报
月刊
1004-4957
44-1318/TH
大16开
广州市先烈中路100号
46-104
1982
chi
出版文献量(篇)
6306
总下载数(次)
8
总被引数(次)
62582
论文1v1指导