对于快时变且稀疏环境下的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统模型,现有的方法是基于基扩展模型(Basic Expansion Model,BEM)进行估计,并利用恒定幅值零自相关(Constant Amplitude Zero Auto Correlation,CAZAC)序列估计时延.本文利用信道响应中稀疏的观测矩阵,用压缩感知(Compress Sensing,CS)的正交匹配跟踪(Orthogonal Matching Pursuit,OMP)算法进行时延估计.仿真结果表明,两种方法都能对时延进行有效的筛选,但当多普勒频移增大、信噪比较低时,本文将OMP、BEM相结合的方法效果较优.