基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了有效解决脉冲噪声环境下的稀疏系统辨识(Sparse system identification,SSI)问题,以l1-范数为约束构建稀疏递归互相关熵准则(Recursive maximum correntropy criterion,RMCC)算法来解决脉冲噪声对于辨识性能的影响.结合带遗忘算子的互相关熵准则和l1-范数作为代价函数,推导出一种递归形式的算法,其相对于传统的最大相关熵算法具有快的收敛速度及小的稳态误差.仿真实验结果表明:该算法对于脉冲噪声干扰环境下的SSI问题具有强的鲁棒性.
推荐文章
基于稀疏表示的快速l2-范数人脸识别方法
人脸识别
稀疏表示
特征融合
字典缩减
正则化最小二乘法
基于l2,1范数原子选择的图像分块稀疏重构
压缩感知
稀疏表示
l2,1范数选择
图像重构
图像分块
匹配追踪
基于l2-范数重构样本约束的稀疏表示人脸识别方法
稀疏表示
人脸识别
联合表示
重构样本
基于L0稀疏约束的近似稀疏解人耳识别
SRC稀疏分类
OMP算法
L0稀疏约束
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于l1-范数约束的递归互相关熵的稀疏系统辨识
来源期刊 信号处理 学科 工学
关键词 互相关熵 l1-范数限制 递归 稀疏系统辨识 脉冲噪声
年,卷(期) 2016,(9) 所属期刊栏目 算法研究
研究方向 页码范围 1079-1086
页数 8页 分类号 TN911
字数 4202字 语种 中文
DOI 10.16798/j.issn.1003-0530.2016.09.10
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周千 西安航空学院理学院 23 44 4.0 5.0
2 马文涛 西安理工大学自动化与信息工程学院 11 36 4.0 6.0
3 桂冠 南京邮电大学通信与信息工程学院 7 29 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (21)
参考文献  (22)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (0)
1968(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
互相关熵
l1-范数限制
递归
稀疏系统辨识
脉冲噪声
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导