基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Raw Global Positioning System (GPS) data can provide rich context information for behaviour understanding and transport planning. However, they are not yet fully understood, and fine-grained identification of transportation mode is required. In this paper, we present a robust framework without geographic information, which can effectively and automatically identify transportation modes including car, bus, bike and walk. Firstly, a trajectory segmentation algorithm is designed to divide raw GPS trajectory into single mode segments. Secondly, several modern features are proposed which are more discriminating than traditional features. At last, an additional postprocessing procedure is adopted with considering the wholeness of trajectory. Based on Random Forest classifier, our framework can achieve a promising accuracy by distance of 82.85% for identifying transportation modes and especially 91.44% for car mode.
推荐文章
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
一种改进的K-Modes聚类算法
分类型数据
聚类算法
期望熵
目标函数
聚类精度
Geochemistry and petrology of superpure quartzites from East Sayan Mountains, Russia
High-purity quartz
Superquartzite
Gravitational sliding
Dynamic metamorphism
Recrystallization
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Identifying Transportation Modes from Raw GPS Data
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 GPS TRANSPORTATION mode RANDOM FOREST CLASSIFIER
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 100-102
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GPS
TRANSPORTATION
mode
RANDOM
FOREST
CLASSIFIER
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导