基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在实际应用中,当目标本身含有一些固有的颜色纹理特征时,可将这些特征作为一种先验信息,这样可以大大提高分割的准确性.为此,本文提出了一种基于先验信息的改进水平集图像分割方法.首先,利用传统的C-V模型能量项的构造思想构建了基于颜色信息的局部能量项,该项是用于处理彩色图像;然后将颜色分量引入到传统的结构张量中构建出新的扩展型结构张量,该项是用于处理纹理信息;最后,将上述新构造的能量项以及Li模型约束项引入到传统C-V模型中得到新的水平集模型.鉴于草莓果实所具有的颜色信息和纹理信息,本文将上述改进水平集方法应用到农业自动化应用中草莓果实分割中.对实验室环境与草莓生长环境下的草莓图像进行分别实验,结果显示该方法能够不仅能够分割出草莓果实且能够很好地处理草莓表面的纹理信息.另还与OTSU算法、传统C-V模型、改进C-V模型对草莓图像作对比实验,结果表明本文算法均比上述三种算法具有更好的分割效果.
推荐文章
基于模糊水平集的脑肿瘤MR图像分割方法
脑肿瘤
MR
模糊聚类
水平集
图像分割
基于多水平集的植物图像分割
图像分割
多水平集
植物
基于贝叶斯分类的水平集MR图像分割方法
MRI
图像分割
水平集
贝叶斯分类
窄带法
基于水平集理论的图像分割
水平集
区域
曲线演化
图像分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于先验知识水平集方法的草莓图像分割
来源期刊 计算机系统应用 学科
关键词 图像分割 水平集方法 先验信息 结构张量 OTSU
年,卷(期) 2016,(2) 所属期刊栏目 软件技术·算法
研究方向 页码范围 124-129
页数 6页 分类号
字数 4379字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何立新 中国科学技术大学信息科学技术学院 19 30 3.0 4.0
4 孔斌 中国科学院合肥智能机械研究所 20 224 6.0 14.0
5 孙翠敏 中国科学技术大学信息科学技术学院 3 8 2.0 2.0
15 朱勇军 中国科学技术大学信息科学技术学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (50)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1988(3)
  • 参考文献(1)
  • 二级参考文献(2)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分割
水平集方法
先验信息
结构张量
OTSU
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
论文1v1指导