作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高电力系统短期负荷的预测精度,确保电网安全和经济运行,提出一种基于优化的灰色理论和Elman神经网络混合方法.该方法充分考虑温度因素、周类型、天气状况等影响预测精度的不确定因素,通过数据模拟预测,该方法具有较高的预测精度和收敛速度,在电力系统短期负荷预测中具有一定的应用价值.
推荐文章
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于 BP 神经网络系统的短期电力负荷预测
电力负荷预测
神经网络
BP 算法
MATLAB
误差分析
基于TensorFlow的LSTM循环神经网络短期电力负荷预测
Tensor Flow
LSTM
深度学习
短期电力负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于优化灰色理论和神经网络的电力负荷短期预测
来源期刊 山东电力技术 学科 工学
关键词 电力系统 负荷预测 灰色理论 Elman神经网络
年,卷(期) 2016,(2) 所属期刊栏目 专题论述
研究方向 页码范围 31-35
页数 5页 分类号 TM734
字数 3175字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李娟 12 25 2.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (44)
参考文献  (16)
节点文献
引证文献  (2)
同被引文献  (16)
二级引证文献  (1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(7)
  • 参考文献(1)
  • 二级参考文献(6)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(11)
  • 参考文献(0)
  • 二级参考文献(11)
2006(8)
  • 参考文献(2)
  • 二级参考文献(6)
2007(6)
  • 参考文献(4)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
电力系统
负荷预测
灰色理论
Elman神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东电力技术
月刊
1007-9904
37-1258/TM
大16开
山东省济南市市中区望岳路2000号
1974
chi
出版文献量(篇)
3636
总下载数(次)
15
总被引数(次)
9152
论文1v1指导