基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对风电场进行短期功率预测能够有效减小风电场出力波动对电力系统的影响,降低电力系统的运行成本和旋转备用.综合考虑天气因素以及风速连续性的影响,提出基于相似日和风电连续性的风电场短期功率预测方法.首先,完成BP神经网络训练样本的选择,然后利用预测日前一天的风速作为输入,完成预测日功率的预测,最后将此模型运用于威海某风电场,并与仅考虑风速连续性得到的预测结果相比较,分析预测误差,结果表明前者预测精度更高.
推荐文章
基于深度学习网络的风电场功率短期预测研究
风电场
数值天气预报
功率预测
深度学习网
卡尔曼滤波修正的风电场短期功率预测模型
卡尔曼滤波
神经网络
功率预测
风力发电
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
基于相似样本的风速组合预测
层次聚类
模拟退火果蝇算法
高斯扰动
灰色关联度
组合预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相似日和风速连续性的风电场短期功率预测
来源期刊 山东电力技术 学科 工学
关键词 相似日 相似曲线 风速 BP神经网络 功率预测
年,卷(期) 2016,(11) 所属期刊栏目 电网技术
研究方向 页码范围 39-43
页数 5页 分类号 TK81|TM712
字数 4082字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (127)
共引文献  (1259)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (39)
二级引证文献  (22)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(4)
  • 参考文献(0)
  • 二级参考文献(4)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(20)
  • 参考文献(2)
  • 二级参考文献(18)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(24)
  • 参考文献(2)
  • 二级参考文献(22)
2009(10)
  • 参考文献(2)
  • 二级参考文献(8)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(16)
  • 引证文献(0)
  • 二级引证文献(16)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
相似日
相似曲线
风速
BP神经网络
功率预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东电力技术
月刊
1007-9904
37-1258/TM
大16开
山东省济南市市中区望岳路2000号
1974
chi
出版文献量(篇)
3636
总下载数(次)
15
总被引数(次)
9152
论文1v1指导