基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对突发事件下城市道路车辆排队系统的特点,从时空角度综合考虑车辆排队系统的影响因素,建立支持向量回归(SVR)动态模型对车辆排队长度进行预测。考虑到参数选择对模型性能影响的敏感性,提出了以k折交叉验证(k-CV)均方误差平均值为适应度的粒子群优化(PSO)方法并对SVR模型参数进行寻优。用提出的PSO-SVR模型与K-CV和遗传算法(GA)优化的SVR模型以及BP网络预测模型对比,实验结果表明,该模型具有较高的预测精度和泛化能力,适用于车辆排队长度的预测。
推荐文章
应用灰关联分析的PSO-SVR工程造价预测模型
工程造价
PSO-SVR预测模型
粒子群优化算法
灰关联分析
旅游客流量预测:基于季节调整的PSO-SVR模型研究
旅游客流量预测
粒子群算法
支持向量回归机
季节调整
均方差比较
基于 InSAR 监测和 PSO-SVR 模型的高填方区沉降预测
高填方区域
粒子群算法
支持向量机回归
形变预测
基于视频分析的车辆排队长度检测
车辆排队检测
车灯检测
摄像机标定
队列长度计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-SVR动态模型的车辆排队长度预测
来源期刊 计算机工程与应用 学科 工学
关键词 支持向量回归 粒子群算法 参数优化 车辆排队长度 预测
年,卷(期) 2016,(2) 所属期刊栏目 工程与应用
研究方向 页码范围 239-243
页数 5页 分类号 TP274
字数 4696字 语种 中文
DOI 10.3778/j.issn.1002-8331.1401-0421
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭跃辉 邵阳学院信息工程系 14 23 3.0 4.0
2 孙文兵 邵阳学院理学与信息科学系 43 75 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (97)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (32)
二级引证文献  (0)
1710(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(8)
  • 参考文献(2)
  • 二级参考文献(6)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(10)
  • 参考文献(2)
  • 二级参考文献(8)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量回归
粒子群算法
参数优化
车辆排队长度
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导