基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种改进粒子群优化的RBF神经网络微电网动态等效模型及建模方法,利用RBF人工神经网络的非线性映射特性解决微电网系统并网接入的等效建模问题.基于微电网公共接人点(PCC)的电压、电流、功率等量测数据构建RBF神经网络等效模型,将接入点电压和电流分别作为神经网络的输入和输出,使神经网络的输入输出更具独立性.将混沌优化的全局遍历性引入粒子群优化算法中,构建基于全局最优解的变邻域混沌搜索提高粒子群算法的全局搜索能力,利用改进粒子群算法优化RBF神经网络模型参数提高模型计算精度.最后通过微电网并网仿真实验验证本文提出等效模型的准确性和建模方法的合理性.
推荐文章
基于PSO-RBF神经网络的模拟电路诊断
模拟电路
故障诊断
径向基神经网络
粒子群算法
小波包分解
基于PSO-RBF神经网络的海战场电磁态势预测
海战场
电磁态势
神经网络
粒子群算法
模拟退火法
遗传算法
基于PSO的RBF神经网络的变频调速系统的研究
粒子群
BP神经网络
变频调速系统
基于PSO-RBF的边坡安全系数预测
粒子群算法
RBF神经网络
边坡安全系数
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-RBF神经网络的微电网等效建模
来源期刊 太阳能学报 学科 工学
关键词 RBF神经网络 等效建模 粒子群优化 混沌搜索 微电网
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 76-83
页数 8页 分类号 TM744
字数 4805字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (76)
参考文献  (22)
节点文献
引证文献  (5)
同被引文献  (8)
二级引证文献  (1)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(9)
  • 参考文献(2)
  • 二级参考文献(7)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(10)
  • 参考文献(5)
  • 二级参考文献(5)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(6)
  • 参考文献(5)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RBF神经网络
等效建模
粒子群优化
混沌搜索
微电网
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
论文1v1指导