基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
运动目标检测是视频监控任务的基础问题之一,针对灰度信息,目标检测存在的阴影识别能力差、检测精度低等问题,提出在HSV颜色空间下基于低秩矩阵分解的运动目标检测算法.首先将获取的RGB图像转为HSV颜色空间分量,分别对H、S、V通道构建低秩观测量,进行低秩矩阵优化分解,分离出不同颜色通道的前景和背景分量;组合H、S、V通道分量的前景图像,得到粗略的运动目标区域;再采用HSV颜色阴影去除去除前景图像中的阴影;最后经噪声去除和空洞的填充,检测得到准确的前景运动目标.实验验证表明,与其它方法相比,能够有效地提高运动目标检测的准确度.
推荐文章
基于低秩矩阵二元分解的快速显著性目标检测算法
显著性目标检测
低秩矩阵双因子分解
分层稀疏正则化
交替方向法
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
基于稀疏与低秩矩阵分解的视频背景建模
背景建模
稀疏与低秩矩阵分解
增广拉格朗日乘子法
奇异值分解
块Lanczos
热启动
低秩矩阵和结构化稀疏分解的视频背景差分方法
前景检测
背景差分
矩阵分解
低秩表示
结构化稀疏
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于低秩矩阵分解的运动目标检测
来源期刊 计算机系统应用 学科
关键词 智能视频监控 运动目标检测 低秩矩阵分解 HSV颜色空间
年,卷(期) 2016,(12) 所属期刊栏目 研究开发
研究方向 页码范围 227-233
页数 7页 分类号
字数 5511字 语种 中文
DOI 10.15888/j.cnki.csa.005585
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许海霞 湘潭大学信息工程学院 24 148 6.0 11.0
2 黄霞 湘潭大学信息工程学院 5 18 2.0 4.0
3 莫言 湘潭大学信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (56)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(2)
  • 二级参考文献(5)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(10)
  • 参考文献(1)
  • 二级参考文献(9)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能视频监控
运动目标检测
低秩矩阵分解
HSV颜色空间
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
相关基金
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
论文1v1指导