原文服务方: 计算机测量与控制       
摘要:
提出基于稀疏表示和近邻嵌入的单帧图像超分辨率重构算法;为低分辨率和高分辨率图像块训练两个基于稀疏表示的过完备字典,在训练的低分辨率图像块和高分辨率图像块中分别选取与这两个字典原子最近的图像块近邻,通过图像块近邻来计算构图像块的权重;一旦得到权重矩阵,高分辨率重构图像块可以由低分辨率图像块与相应权重相乘来表示;与之前的算法相比,所提出的算法在计算字典原子与图像块距离的时候不是逐个图像块进行计算,而是先将图像块聚类,计算字典原子与类中心的距离,在距离最近的一类中选取图像块;计算权重矩阵的时间可以大大减少,提高计算效率;所得到的PSNR与其它算法相比,也有一定提高.
推荐文章
基于稀疏表示和自相似学习的图像超分辨率重构
超分辨率重构
稀疏表示
附加信息
自相似学习
基于二维稀疏表示的人脸超分辨率重构算法
人脸超分辨率
局部分块
二维稀疏表示
二维K-SVD
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示和近邻嵌入的图像超分辨率重构
来源期刊 计算机测量与控制 学科
关键词 超分辨率重构 稀疏表示 过完备字典 图像块近邻 权重
年,卷(期) 2016,(5) 所属期刊栏目 设计与应用
研究方向 页码范围 173-177
页数 5页 分类号 TP3
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2016.05.050
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常志国 长安大学信息工程学院 15 82 6.0 8.0
2 李晶 长安大学信息工程学院 3 28 3.0 3.0
3 胡云鹭 长安大学信息工程学院 2 12 2.0 2.0
4 郭茹侠 长安大学信息工程学院 6 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (23)
二级引证文献  (2)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
超分辨率重构
稀疏表示
过完备字典
图像块近邻
权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导