作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Slope One算法基于简单的线性回归模型,通过减少响应时间和维护难度,显著提高了推荐性能。然而Slope One算法没有考虑用户内部的关联,同等地使用各个用户数据进行预测,容易造成偏差,影响推荐质量。本文提出了一种改进的Slope One算法,它将用户相似度纳入考虑并且对评分偏差计算公式进行了修正。基于项目的Slope One算法结合基于用户的协同过滤算法,提出新的混合推荐算法US-Slope One。在MovieLens数据集上的实验结果表明,该算法与原Slope One算法相比具有更好的预测准确度和推荐质量。
推荐文章
基于用户相似性的加权Slope One算法
个性化推荐系统
Slope One
相似性
用户活跃度
评分预测
基于耦合关系的加权Slope One算法
协同过滤
Slope One算法
项目耦合相似度
用户耦合相似度
基于关联规则策略加权的Slope One算法改进
推荐系统
协同过滤推荐算法
数据挖掘
加权SlopeOne算法
关联规则
融合改进加权Slope One的协同过滤算法
加权Slope One
项目相似度
协同过滤
矩阵填充
数据稀疏性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于用户相似度加权的Slope One算法
来源期刊 软件 学科 工学
关键词 协同过滤 用户相似度 Slope One 数据挖掘 个性化推荐
年,卷(期) 2016,(4) 所属期刊栏目 基金项目论文
研究方向 页码范围 57-59
页数 3页 分类号 TP391
字数 2256字 语种 中文
DOI 10.3969/j.issn.1003-6970.2016.04.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田松瑞 西南大学计算机与信息科学学院 2 12 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (525)
参考文献  (7)
节点文献
引证文献  (12)
同被引文献  (18)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(6)
  • 参考文献(3)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(5)
  • 引证文献(5)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
用户相似度
Slope One
数据挖掘
个性化推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
论文1v1指导