原文服务方: 现代电子技术       
摘要:
针对机床刀具的故障诊断系统进行研究,使用智能人工神经网络算法建立诊断模型。为了提高神经网络模型的训练效率,避免网络陷入局部最优解,使用一种改进的量子神经网络,将附加动量与自适应学习速度方法融合,提高网络收敛效率。使用五轴联动铣床进行刀具故障诊断识别。对声发射信号进行特征提取,使用总振铃技术、总能量、有效电压、事件计数、重心频率、均方根频率以及频率标准方差作为网络的输入向量,判别刀具为新刀、轻微磨损或严重磨损。实验结果表明,使用的改进的量子神经网络的效率以及识别准确度均高于常规BP神经网络。
推荐文章
基于改进的LVQ神经网络的发动机故障诊断
改进的LVQ神经网络
发动机
故障诊断
神经元
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
基于改进BP神经网络的故障诊断方法
改进BP算法
神经网络
发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进神经网络的机床刀具故障诊断
来源期刊 现代电子技术 学科
关键词 机床刀具故障诊断 量子神经网络 BP神经网络 声发射信号
年,卷(期) 2016,(17) 所属期刊栏目 电子技术应用
研究方向 页码范围 167-170
页数 4页 分类号 TN711-34|TH183
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2016.17.042
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (52)
参考文献  (18)
节点文献
引证文献  (3)
同被引文献  (16)
二级引证文献  (1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(3)
  • 二级参考文献(4)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(13)
  • 参考文献(1)
  • 二级参考文献(12)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
机床刀具故障诊断
量子神经网络
BP神经网络
声发射信号
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导