作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于HOG特征结合稀疏外观模型(HOG-SPAM)的目标跟踪算法.提取目标模版和候选目标的HOG特征,HOG特征对图像的几何形变、光照以及阴影变化具有较强的鲁棒性;使用提取的HOG特征构建目标的稀疏外观模型,稀疏外观模型对目标外观变化具有鲁棒性,采用对齐汇聚方法度量候选目标与目标之间的相似性.在多个基准图像序列中,与已有流行方法相比,HOG-SPAM算法在目标外观变化和光照变化情况下有较好的鲁棒性,同时在复杂背景情况下也具有一定鲁棒性.
推荐文章
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
基于HOG及在线多实例学习的目标跟踪算法
HOG
分类器
在线多实例学习
目标跟踪
基于稀疏表示和特征选择的LK目标跟踪
视觉跟踪
稀疏表示
LK图像配准算法
特征选择
基于OTSU分割和HOG特征的行人检测与跟踪方法
行人检测
HOG特征
隐马尔可夫模型
OTSU算法
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于HOG特征及稀疏外观模型的目标跟踪
来源期刊 软件导刊 学科 工学
关键词 稀疏表示 HOG特征 稀疏外观模型
年,卷(期) 2016,(6) 所属期刊栏目 软件理论与方法
研究方向 页码范围 13-16,封2
页数 5页 分类号 TP301
字数 4036字 语种 中文
DOI 10.11907/rjdk.161559
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘天池 山东科技大学信息科学与工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏表示
HOG特征
稀疏外观模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导