作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
手写体字符识别是人机交互领域的一个重要内容,本文基于 BP 神经网络实现了任意数量字符模版的多字符手写体字符识别。分为以下几步,第一,首先对目标图像进行识别前预处理。包括灰度图像二值化、图像孤立像素滤波、图像膨胀、腐蚀、按字母最小行分割、按字母最小列分割、图像紧缩、归一化等;第二,用处理好的多个样本进行BP神经网络训练。包括BP网络参数的选择、目标结果构建、输入到结果的映射即用样本库进行神经网络学习机的训练;第三,待测字母的识别。包括对图像预处理、字符提取、归一化和送入已训练好的BP网络进行识别。该系统最终实现了95%以上的手写字符识别正确率,有一定的借鉴意义。
推荐文章
基于方向线素特征的手写体维文字符识别
手写体维吾尔文字符
方向线素
KNN识别分类器
训练样本
测试样本
细化算法在手写体字符识别中的应用
骨架
连通
模板
串行细化
并行细化
BP网络在手写体数字识别中的应用
数字识别
BP神经网络
部分连接
应用
基于小波变换Hopfield神经网络的手写体数字识别
Hopfield神经网络
小波变化
字符识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的多样本手写体字符识别
来源期刊 软件 学科 工学
关键词 模式识别 BP神经网络 手写体字符识别 图像分析
年,卷(期) 2016,(7) 所属期刊栏目 设计研究与应用
研究方向 页码范围 103-108
页数 6页 分类号 TP391.41
字数 2857字 语种 中文
DOI 10.3969/j.issn.1003-6970.2016.07.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李丹 8 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (64)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模式识别
BP神经网络
手写体字符识别
图像分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
总被引数(次)
23629
论文1v1指导