作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在数据挖掘中由于每个数据对象对于知识发现的作用是不同的,为了区分这些相异之处,给每个对象赋予一定量的值,因此在PAM聚类算法的基础上提出一种W-PAM(Weight Partitioning Around Medoids)聚类算法,它为簇中数据对象加入权重来提高算法的准确率,此外利用数据对象间的关联限制能够提高聚类算法的效果.探讨了一种W-PAM算法与关联限制相结合的限制聚类算法,该算法同时拥有W-PAM算法和关联限制的优点.实验结果证明,W-PAM的限制聚类算法可以更有效地利用所给的关联限制来改善聚类效果,提高算法的准确率.
推荐文章
数据挖掘中聚类算法研究
数据挖掘
聚类
SOM
数据挖掘中的聚类算法综述
数据挖掘
聚类
聚类算法
一种数据挖掘算法在入侵检测系统中的应用
数据挖掘
入侵检测
数据关联
一种基于密度的文本聚类挖掘算法
分词
文本聚类
向量空间模型
核心对象
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种数据挖掘中的W-PAM限制聚类算法
来源期刊 计算机科学 学科 工学
关键词 数据挖掘 W-PAM 关联限制 限制聚类
年,卷(期) 2016,(z2) 所属期刊栏目 数据挖掘
研究方向 页码范围 447-450
页数 4页 分类号 TP393
字数 5159字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张琳 南京邮电大学计算机学院 44 414 10.0 19.0
2 张松 南京邮电大学计算机学院 3 16 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (878)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (31)
二级引证文献  (11)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
数据挖掘
W-PAM
关联限制
限制聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导