基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在传统偏好多目标进化算法中,参考点是表达决策者的偏好信息最常用的方式,但是参考点所处位置信息有时严重影响算法的性能.针对以上问题,本文提出了一种基于权重迭代的偏好多目标分解算法(MOEA/D-PRE),主要利用权重迭代方法获取一组均匀的权重向量,并对偏好区域进行映射,使得算法在进化过程中,不用考虑参考点所处位置信息对算法性能的影响,另外提出了一种稳定可控的偏好区域模型,能响应决策者设置任意大小的偏好区域.通过对比实验表明该算法具有较好的收敛性和分布性,同时给出了满足决策者不同要求的算法模型,并且能够很好的解决参考点的位置信息对算法的影响.
推荐文章
基于穿越长度权重迭代重建算法的研究
CT
穿越长度权重
投影系数
迭代重建算法
一种基于综合引导的偏好多目标优化算法
多目标优化
偏好区域
粒子群
综合引导
一种基于邻居支配关系的偏好多目标进化算法
多目标进化算法
引用点方法
邻居支配关系
感兴趣区域
偏好信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于权重迭代的偏好多目标分解算法解决参考点对算法影响的研究
来源期刊 电子学报 学科 工学
关键词 多目标分解算法 进化算法 偏好 权重迭代 决策者
年,卷(期) 2016,(1) 所属期刊栏目 学术论文
研究方向 页码范围 67-76
页数 10页 分类号 TP18
字数 6819字 语种 中文
DOI 10.3969/j.issn.0372-2112.2016.01.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (35)
参考文献  (12)
节点文献
引证文献  (9)
同被引文献  (23)
二级引证文献  (17)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(17)
  • 引证文献(4)
  • 二级引证文献(13)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
多目标分解算法
进化算法
偏好
权重迭代
决策者
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
湖南省自然科学基金
英文译名:Natural Science Foundation of Hunan Province
官方网址:http://jj.hnst.gov.cn/
项目类型:一般面上项目
学科类型:
论文1v1指导